1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
use itertools::izip;
use ndarray::parallel::prelude::{IntoParallelRefIterator, ParallelIterator};
use crate::{
geom::{Cube, Triangle},
rt::{Ray, Side},
};
#[derive(Clone)]
pub struct Mesh {
pub boundary: Cube,
pub tris: Vec<Triangle>,
}
impl Mesh {
#[inline]
#[must_use]
pub fn new(tris: Vec<Triangle>) -> Self {
debug_assert!(!tris.is_empty());
let mut mins = tris[0].centre();
let mut maxs = mins;
for tri in &tris {
for vert in tri.verts {
for (a, (min, max)) in izip!(vert.iter(), izip!(mins.iter_mut(), maxs.iter_mut())) {
if *min > *a {
*min = *a;
} else if *max < *a {
*max = *a;
}
}
}
}
let mut boundary = Cube::new(mins, maxs);
boundary.expand(0.01);
Self { boundary, tris }
}
#[inline]
#[must_use]
pub fn collides(&self, cube: &Cube) -> bool {
if !self.boundary.collides(cube) {
return false;
}
self.tris.par_iter().any(|tri| tri.collides(cube))
}
#[inline]
#[must_use]
pub fn hit(&self, ray: &Ray) -> bool {
if !self.boundary.hit(ray) {
return false;
}
self.tris.par_iter().any(|t| t.hit(ray))
}
#[inline]
#[must_use]
pub fn dist(&self, ray: &Ray) -> Option<f64> {
if !self.boundary.hit(ray) {
return None;
}
self.tris
.par_iter()
.filter_map(|tri| tri.dist(ray))
.min_by(|a, b| {
a.partial_cmp(b)
.expect("Failed to perform Ray-Mesh intersection")
})
}
#[inline]
#[must_use]
pub fn dist_side(&self, ray: &Ray) -> Option<(f64, Side)> {
if !self.boundary.hit(ray) {
return None;
}
self.tris
.par_iter()
.filter_map(|tri| tri.dist_side(ray))
.min_by(|a, b| {
a.0.partial_cmp(&b.0)
.expect("Failed to perform Ray-Mesh intersection")
})
}
}