[−][src]Module ndarray::parallel 
Parallelization features for ndarray.
Parallelization features are based on the crate [rayon] and its parallel iterators. Ndarray implements the parallel iterable traits for arrays and array views, for some of its iterators and for [Zip]. There are also directly parallelized methods on arrays and on [Zip].
This requires the crate feature rayon to be enabled.
The following types implement parallel iterators, accessed using these methods:
- [
Array], [ArcArray]:.par_iter()and.par_iter_mut() ArrayView:.into_par_iter()ArrayViewMut:.into_par_iter()AxisIter,AxisIterMut:.into_par_iter()AxisChunksIter,AxisChunksIterMut:.into_par_iter()- [
Zip].into_par_iter() 
The following other parallelized methods exist:
- [
ArrayBase::par_map_inplace()] - [
ArrayBase::par_mapv_inplace()] - [
Zip::par_apply()] (all arities) - [
Zip::par_apply_collect()] (all arities) - [
Zip::par_apply_assign_into()] (all arities) 
Note that you can use the parallel iterator for [Zip] to access all other rayon parallel iterator methods.
Only the axis iterators are indexed parallel iterators, the rest are all “unindexed”. Use ndarray’s [Zip] for lock step parallel iteration of multiple arrays or producers at a time.
Examples
Arrays and array views
Compute the exponential of each element in an array, parallelized.
extern crate ndarray; use ndarray::Array2; use ndarray::parallel::prelude::*; fn main() { let mut a = Array2::<f64>::zeros((128, 128)); // Parallel versions of regular array methods a.par_map_inplace(|x| *x = x.exp()); a.par_mapv_inplace(f64::exp); // You can also use the parallel iterator directly a.par_iter_mut().for_each(|x| *x = x.exp()); }
Axis iterators
Use the parallel .axis_iter() to compute the sum of each row.
extern crate ndarray; use ndarray::Array; use ndarray::Axis; use ndarray::parallel::prelude::*; fn main() { let a = Array::linspace(0., 63., 64).into_shape((4, 16)).unwrap(); let mut sums = Vec::new(); a.axis_iter(Axis(0)) .into_par_iter() .map(|row| row.sum()) .collect_into_vec(&mut sums); assert_eq!(sums, [120., 376., 632., 888.]); }
Axis chunks iterators
Use the parallel .axis_chunks_iter() to process your data in chunks.
extern crate ndarray; use ndarray::Array; use ndarray::Axis; use ndarray::parallel::prelude::*; fn main() { let a = Array::linspace(0., 63., 64).into_shape((4, 16)).unwrap(); let mut shapes = Vec::new(); a.axis_chunks_iter(Axis(0), 3) .into_par_iter() .map(|chunk| chunk.shape().to_owned()) .collect_into_vec(&mut shapes); assert_eq!(shapes, [vec![3, 16], vec![1, 16]]); }
Zip
Use zip for lock step function application across several arrays
extern crate ndarray; use ndarray::Array3; use ndarray::Zip; type Array3f64 = Array3<f64>; fn main() { const N: usize = 128; let a = Array3f64::from_elem((N, N, N), 1.); let b = Array3f64::from_elem(a.dim(), 2.); let mut c = Array3f64::zeros(a.dim()); Zip::from(&mut c) .and(&a) .and(&b) .par_apply(|c, &a, &b| { *c += a - b; }); }
Re-exports
pub use crate::par_azip; | 
Modules
| prelude | Into- traits for creating parallelized iterators and/or using [  | 
Structs
| Parallel | Parallel iterator wrapper.  |